Approximability of the capacitated b-edge dominating set problem

André Bergera, Takuro Fukunagab,*, Hiroshi Nagamochib, Ojas Parekhc

a Department of Mathematics, Technical University Berlin, 10623, Germany
b Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto, Japan
c Department of Mathematics and Computer Science, Emory University, Atlanta, GA, 30322, USA

Received 27 October 2006; received in revised form 4 June 2007; accepted 24 June 2007

Communicated by G. Ausiello

Abstract

In this paper, we discuss the approximability of the capacitated b-edge dominating set problem, which generalizes the edge dominating set problem by introducing capacities and demands on the edges. We present an approximation algorithm for this problem and show that it achieves a factor of $8/3$ for general graphs and a factor of 2 for bipartite graphs. Moreover, we discuss the relationships of the edge dominating set problem and the vertex cover problem. The results show that improving the approximation factor beyond $8/3$ using our approach of adding valid inequalities to a natural linear programming relaxation is as hard as improving the approximation factor for vertex cover beyond 2.

Keywords: Edge dominating set; Approximation algorithm; Integrality gap

1. Introduction

Let \mathbb{Z}_+, \mathbb{Q}_+ and \mathbb{R}_+ denote the sets of nonnegative integers, rational numbers and real numbers, respectively. Moreover, let $G = (V, E)$ be a simple undirected graph. We say that an edge $e = (u, v)$ dominates edges incident to u or v, and define an edge dominating set (EDS) to be a set F of edges such that each edge in E is dominated by at least one edge in F. Given a cost vector $w \in \mathbb{Q}_+^E$ together with G, the EDS problem asks to find an EDS with minimum cost. This problem is one of the fundamental covering problems such as the well-known vertex cover problem and has some useful applications [1, 15]. The problem with a cost vector w with $w(e) = 1$ for all $e \in E$ is called the cardinality case; otherwise the problem is called the cost case.

The cardinality case is NP-hard even for some restricted classes of graphs such as planar or bipartite graphs of maximum degree 3 [7, 15]. Moreover, it is proven that the cardinality case is hard to approximate within any constant factor smaller than $7/6$ unless $P = NP$ [5]. In contrast, some polynomially solvable cases are also found for the cardinality case [7, 9, 13].

For the cost case, the problem is approximable within factor of $2r$ if there is an r-approximation algorithm for
the minimum cost vertex cover problem [4], where currently \(r \leq 2 \) is known. Furthermore, Carr et al. [4] presented a 2.1-approximation algorithm. Their algorithm constructs an instance of the minimum cost edge cover problem from the original instance and finds an optimal edge cover for the resulting instance. A key property for this method is that an edge cover in the resulting instance is also an EDS for the original instance and that its cost is at most 2.1 times the minimum cost of an EDS in the original instance. The property is proved based on a relation between the fractional edge dominating set polyhedron and the edge cover polyhedron. The former is a polyhedron containing all incidence vectors of EDSs, which may not be the convex hull of these vectors. In contrast, the latter is a polyhedron, which is known as the convex hull of all incidence vectors of edge covers [12]. Afterwards, Fujito and Nagamochi [6], and Parekh [11] independently gave a 2-approximation algorithm by using a refined EDS polyhedron. In [4] it was also shown that the weighted vertex cover problem can be approximated as well as the weighted EDS. Therefore, finding a constant approximation ratio of less than 2 for EDS is as unlikely as finding one for the vertex cover problem. Moreover, Könemann et al. proposed 3-approximation algorithms for the problem of finding a minimum cost EDS which forms a tree or a tour [8].

In this paper, we mainly discuss the approximability of the capacitated \((b, c)\)-EDS problem. An instance of this problem consists of a graph \(G = (V, E) \), a demand vector \(b \in \mathbb{Z}^E_+ \), a capacity vector \(c \in \mathbb{Z}^E_+ \) and a cost vector \(w \in \mathbb{Q}^E_+ \). A set \(F \) of edges in \(G \) is called a \((b, c)\)-EDS if each \(e \in E \) is adjacent to at least \(b(e) \) edges in \(F \), where we allow \(F \) to contain at most \(c(e) \) multiple copies of edge \(e \). The problem asks to find a minimum cost \((b, c)\)-EDS. The \((b, c)\)-EDS problem generalizes the EDS problem in much the same way that the set multicolor problem generalizes the set cover problem [14] and that the \(b \)-vertex cover problem generalizes the vertex cover problem. If \(b(e) = 1 \) and \(c(e) \geq 1 \) for all \(e \in E \), this problem is equivalent to the EDS problem. In the special case when all the capacities \(c \) are set to \(+\infty \), we call the resulting problem the \(b \)-EDS problem and its feasible solutions \(b \)-EDSs.

A linear time 2-approximation for the cardinality \(b \)-EDS problem in general graphs and a linear time algorithm that optimally solves the cost case of the \((0, 1)\)-EDS problem (where \(b_e \in \{0, 1\} \) for all \(e \in E \)) in trees appears in [3]. In this paper we present an 8/3-approximation for the cost case of the \((b, c)\)-EDS problem in general graphs. This algorithm transform an instance of the \((b, c)\)-EDS problem into that of a capacitated \(d \)-edge cover (\((d, c)\)-edge cover) problem, which is a generalization of the edge cover problem, defined formally later. The analyses exploit the relation between two polytopes related to the above two problems as the analysis of the 2.1-approximation algorithm does. Moreover, we discuss the relationships of EDS problems and vertex cover problems, in particular how their linear programming formulations and their integrality gaps relate. We will also use these relationships, and a result by Arora et al. [2], to show that appropriate generalizations of the inequalities used for the 2-approximation for the EDS problem cannot improve the approximation ratio of our linear program beyond 8/3.

The paper is organized as follows. Section 2 defines the notations used in this paper. Section 3 introduces some polytopes for the \((b, c)\)-EDS problem with a review of those used in the 2.1- and 2-approximation algorithms for the EDS problem. Section 4 describes and analyzes the approximation algorithm for the \((b, c)\)-EDS problem, and Section 5 shows our hardness result.

2. Preliminaries

We denote by \(\theta_k \in \mathbb{Q}_+ \) the \(k \)th harmonic number \(\sum_{i=1}^{k} \frac{1}{i} \). Let \(G = (V, E) \) denote a simple undirected graph with vertex set \(V \) and edge set \(E \). An edge \(e = (u, v) \in E \) in \(G \) is defined as a pair of distinct vertices \(u \) and \(v \). For a vertex \(v \), \(\delta(v) \) denotes the set of edges incident to \(v \). For an edge \(e \), \(\delta(e) \) denotes the set of edges incident to vertices contained in \(e \), i.e., \(\delta(e) = \{ e' \in E \mid e \cap e' \neq \emptyset \} \). For a subset \(S \subseteq V \), \(\delta(S) \) denotes the set of edges \(e = (u, v) \) with \(u \in S \) and \(v \in V - S \), and \(E[S] \) denotes the set of edges contained in \(S \), i.e., \(E[S] = \{ e \in E \mid e \subseteq S \} \). Let \(x \) be an \(|E| \)-dimensional nonnegative real vector, i.e., \(x \in \mathbb{R}^E_+ \). We indicate the entry in \(x \) corresponding to an edge \(e \) by \(x(e) \). For a subset \(F \) of \(E \), we denote \(x(F) = \sum_{e \in F} x(e) \). For an edge set \(F \) such that each edge \(e' \in F \) corresponds to an edge \(e \in E \), \(x_F \in \mathbb{R}^E_+ \) denotes a projection of \(x \) to \(F \), i.e., \(x_F(e') = x(e) \) for all \(e' \in F \).

3. LP relaxations for the \((b, c)\)-EDS problem and the \((d, c)\)-edge cover problem

For an instance \((G = (V, E), b, c, w) \), an integer program of the \((b, c)\)-EDS problem is given as
minimize $w^T x$
subject to $x(e) \leq c(e)$ for each $e \in E$,
$x(\delta(v)) \geq b(e)$ for each $e \in E$,
$x \in \mathbb{Z}_+^E$.
\hspace{1cm} (1)

A vector $x \in \mathbb{Z}_+^E$ satisfying (1) is called a (b, c)-EDS.

Let us define a polytope $EDS(G, b, c)$ as the set of vectors $x \in \mathbb{R}_+^E$ such that

(a) $0 \leq x(e) \leq c(e)$ for each $e \in E$,
(b) $x(\delta(v)) \geq b(e)$ for each $e \in E$.

This is the feasible region of an LP relaxation of problem (1). Thus the cost of an optimal solution in $EDS(G, b, c)$ is a lower bound on the minimum cost of a given instance (G, b, c, w).

We now review some results on the (d, c)-edge cover problem, which is another important covering problem. This problem consists of a simple undirected graph $G = (V, E)$, a demand vector $d \in \mathbb{Z}_+^V$ defined on V, a capacity vector $c \in \mathbb{Z}_+^E$ and a cost vector $w \in \mathbb{Q}_+^E$. An integer vector $x \in \mathbb{Z}_+^E$ is called a (d, c)-edge cover if $x(\delta(v)) \geq d(v)$ for each $v \in V$ and $x(e) \leq c(e)$ for each $e \in E$. As in the (b, c)-EDS problem, we call the case when $c = +\infty$ the d-edge cover problem. The objective of the (d, c)-edge cover problem is to find a minimum cost (d, c)-edge cover, which is formulated as

minimize $w^T x$
subject to $x(e) \leq c(e)$ for each $e \in E$,
$x(\delta(v)) \geq d(v)$ for each $v \in V$,
$x \in \mathbb{Z}_+^E$.
\hspace{1cm} (2)

There exists a polynomial time algorithm for this problem [10]. Furthermore, it is known [12] that this problem has an equivalent linear program formulation, where the convex hull of all feasible solutions is characterized by the following set of inequalities:

(c) $0 \leq x(e) \leq c(e)$ for each $e \in E$,
(d) $x(\delta(v)) \geq d(v)$ for each $v \in V$,
(e) $x(E[U]) + x(\delta(U)) - x(F) \geq \left\lceil \frac{d(U) - c(F)}{2} \right\rceil$ for each $U \subseteq V$, $F \subseteq \delta(U)$ with odd $d(U) - c(F)$.

Let $EC(G, d, c)$ denote the polytope represented by these inequalities. If $c = +\infty$ and $F \neq \emptyset$, (e) is always satisfied because its right-hand side equals to $-\infty$. Hence in $EC(G, d, +\infty)$, (e) can be replaced by

$x(E[U]) + x(\delta(U)) \geq \left\lceil \frac{d(U)}{2} \right\rceil$ for each $U \subseteq V$ with odd $d(U)$.

Carr et al. [4] derive the 2.1-approximation algorithm for the EDS problem by considering the relation between two relaxations $EDS(G, 1, +\infty)$ and $EC(G, (0, 1), +\infty)$. Similarly, our algorithm described in Section 4 utilizes the relationship between $EDS(G, b, c)$ and $EC(G, d, c)$.

In the 2-approximation algorithm in [6], $EDS(G, 1, +\infty)$ is replaced by a refined polyhedron whose region is defined by the following inequalities, which are valid for integral EDSs, together with (a) and (b):

$$2x(E[V(P)]) + x(\delta(V(P))) \geq \left\lfloor \frac{|P|}{2} \right\rfloor$$
for each odd cycle P.
\hspace{1cm} (3)

The following inequalities are also valid for integral EDSs [11]:

$$x(E[U]) + x(\delta(U)) \geq \left\lceil \frac{|U|}{4} \right\rceil$$
for each hypomatchable set U with $|U| > 1$,
\hspace{1cm} (4)

where a hypomatchable set is a set $U \subseteq V$ such that $G[U \setminus \{v\}]$ contains a perfect matching for all $v \in U$. Instead of directly augmenting $EDS(G, 1, +\infty)$ with (4), the 2-approximation algorithm in [11] uses the relaxed inequalities obtained by replacing the right-hand side of (4) with $\frac{1}{2}|U|/2$; note that although (3) and (4) are incomparable, the aforementioned relaxed inequalities are implied by (3).

Although exponential in number, the inequalities (3) can either be separated in polynomial time [6] or replaced by
polynomially many inequalities (see, for instance [12, Chapter 68]). Moreover, these inequalities may be rewritten by using variables, \(y(v) \), corresponding to vertices:

\[
\begin{align*}
x(\delta(v)) & \geq y(v) \quad \text{for each } v \in V, \\
\sum_{v \in V(P)} y(v) & \geq \left\lfloor \frac{|P|}{2} \right\rfloor \quad \text{for each odd cycle } P.
\end{align*}
\]

When \(x \) is the incidence vector of an EDS, \(y \) can be chosen as the incidence vector of a vertex cover, and the above odd cycle inequalities are well-known valid polynomially separable inequalities for the vertex cover problem.

Thus it seems natural to consider an analogous approach for the \((b, c)\)-EDS problem of adding valid \((b\text{-vertex cover})\) inequalities to EDS\((G, b, c)\). However (4) does not seem to generalize to valid EDS\((G, b, c)\) inequalities in a straightforward way, and we show in Section 5 that adding valid polynomial separable \(b\)-vertex cover inequalities on the vertex variables, \(y(v) \) cannot improve the integrality gap of EDS\((G, b, c)\) beyond 8/3 unless the vertex cover problem has a polynomially separable LP relaxation with integrality gap strictly less than 2. We provide both a matching upper bound on the integrality gap of EDS\((G, b, c)\) and an approximation algorithm in the next section.

4. An approximation algorithm for the \((b, c)\)-EDS problem

In this section, we present an approximation algorithm for the \((b, c)\)-EDS problem. Given an instance \((G, b, c, w)\) of the \((b, c)\)-EDS problem, the algorithm first constructs an instance of the \((d, c)\)-edge cover problem and then computes an optimal solution for it as an approximate solution to the input instance. A formal description is given in Algorithm 1. The algorithm needs a parameter \(f > 0 \). This parameter has no effect on the feasibility of solutions that the algorithm outputs. However, it must be set to an appropriate value for achieving a good approximation factor when \(c(e) \) is finite for some \(e \in E \) as described later.

Algorithm 1 DOMINATE\((f)\)

Input: An instance \((G, b, c, w)\) of the \((b, c)\)-EDS problem and a real \(f > 0 \)

Output: A \((b, c)\)-EDS to the instance \((G, b, c, w)\).

Step 1: If EDS\((G, b, c)\) = \(\emptyset \), output “infeasible”. Otherwise, compute \(x^* \in \text{EDS}(G, b, c) \) minimizing \(w^T x^* \).

Step 2: Define \(E' := \{ e \in E \mid f x^*(e) > c(e) \} \).

Step 3: For each edge \(e = (u, v) \in E \), let \(b'_{x^*}(u, e) := \max\{0, b(e) - c(\delta(e) \cap E')\} \) and \(b'_{x^*}(v, e) := 0 \) if \(x^*(\delta(u) - E') \geq x^*(\delta(v) - E') \), and let \(b'_{x^*}(u, e) := 0 \) and \(b'_{x^*}(v, e) := \max\{0, b(e) - c(\delta(e) \cap E')\} \) otherwise.

Step 4: For each vertex \(v \in V \), let \(d_{x^*}(v) := \max_{e \in \delta(v)} b'_{x^*}(v, e) \).

Step 5: Set \(\bar{x}_{E'} := c_{E'} \). Moreover, set \(\bar{x}_{E-E'} \) to a minimum cost \((d_{x^*}, c')\)-edge cover for \(G' = (V, E - E') \), \(c' = c_{E-E'} \) and \(w' = w_{E-E'} \). Then output \(\bar{x} \) as a \((b, c)\)-EDS to \((G, b, c, w)\).

If the input instance is infeasible, then there exists an edge \(e \in E \) with \(c(\delta(e)) < b(e) \). Then, the LP relaxation to be solved in Step 1 is also infeasible. Hence DOMINATE\((f)\) stops in Step 1 at that time.

We first show that \(\bar{x} \) is a \((b, c)\)-EDS. For an edge \(e = (u, v) \in E \), let us suppose \(x^*(\delta(u) - E') \geq x^*(\delta(v) - E') \).

Then,

\[
\bar{x}(\delta(u) - E') \geq d_{x^*}(u) \geq b(e) - c(\delta(e) \cap E').
\]

The above first inequality holds since \(\bar{x}_{E-E'} \) is a \((d_{x^*}, c')\)-edge cover, and the second one holds by the definition of \(d_{x^*} \). Since \(\bar{x}(\delta(e) \cap E') = c(\delta(e) \cap E') \), it holds

\[
\bar{x}(\delta(e)) \geq \bar{x}(\delta(u) - E') + \bar{x}(\delta(e) \cap E') \geq b(e).
\]

We can easily check that \(0 \leq \bar{x}(e) \leq c(e) \) also holds. Hence, \(\bar{x} \) is a \((b, c)\)-EDS and algorithm DOMINATE\((f)\) outputs a feasible solution.

We now analyze the approximation factor of algorithm DOMINATE\((f)\) by establishing a relation between EDS\((G, b, c)\) and EC\((G, d_{x^*}, c')\). In the following discussion, we suppose that \(b(e) \geq 1 \) for at least one edge \(e \in E \),
since if \(b(e) = 0 \) for all edges \(e \in E \), DOMINATE\((f) \) apparently outputs the optimal solution \(\bar{x} = 0^E \). At first, we consider the \(b \)-EDS problem, i.e., \(c = +\infty \). In this case, the parameter \(f \) has no effect on the choice of \(E' \) in the algorithm and \(E' = \emptyset \) always holds.

Lemma 1. Let \(x \) be a vector in \(EDS(G = (V, E), b, +\infty) \) and \(d_x \in \mathbb{Z}^V_+ \) be the vector constructed from \(x \) by Step 4 of algorithm DOMINATE\((f) \). Then vector \(2x \in \mathbb{R}^E_+ \) satisfies conditions (c) and (d) for EC\((G, d_x, +\infty) \).

Proof. Let \(x \in EDS(G, b, +\infty) \). Then vector \(2x \) satisfies condition (c) for EC\((G, d_x, +\infty) \) because \(x \in \mathbb{R}^E_+ \) holds by (a) for EDS\((G, b, +\infty) \). We now show that \(2x \) satisfies (d), i.e., \(2x(\delta(v)) \geq d_x(v) \) for all \(v \in V \). Let \(v \) be a vertex in \(V \). Then there is an edge \(e = (u, v) \in E \) such that \(d_x'(v) = b'_x(v, e) \). If \(b'_x(v, e) = 0 \), then we have \(2x(\delta(v)) \geq 0 = d_x(v) \) since \(x \in \mathbb{R}^E_+ \) holds. Therefore, let us assume \(b'_x(v, e) > 0 \). Then \(b'_x(v, e) = b(e) \) and \(x(\delta(v)) \geq x(\delta(u)) \) hold. Now \(x(\delta(e)) \geq b(e) \) holds by (b) for EDS\((G, b, +\infty) \), which implies \(x(\delta(v)) \geq x(\delta(u)) \). Therefore, (d) also holds for \(2x \). \(\square \)

Lemma 2. For a simple undirected graph \(G = (V, E) \) and a demand vector \(d \in \mathbb{Z}^V_+ \), let \(\beta = \min_{v \in V, d(v) \neq 0} d(v) \). Then, for any vector \(x' \in \mathbb{R}^E_+ \) satisfying conditions (c) and (d) for EC\((G, d, +\infty) \), the vector

\[
y = \left(1 + \frac{1}{2\lceil 3\beta/2 \rceil + 1}\right)x' \in \mathbb{R}^E_+
\]

satisfies condition (c) for EC\((G, d, +\infty) \).

Proof. Let \(U \) be a subset of \(V \) such that \(d(U) \) is odd. It suffices to show that (c) holds for \(x = x' \) and \(U \). If \(U \) contains a vertex \(v \) such that \(d(v) = 0 \), then (c) follows inductively from \(y(E[U']) + y(\delta(U')) \geq \left\lceil d(U')/2 \right\rceil \) for \(U' = U - \{v\} \), since \(y(E[U]) + y(\delta(U)) \geq y(E[U']) + y(\delta(U')) \) and \(d(U) = d(U') \). Hence we assume without loss of generality that \(d(v) \geq \beta \) for all \(v \in U \). Moreover, if \(|U| = 1 \), then (c) is implied by (d) since for \(U = \{v\} \), \(y(E[U]) + y(\delta(U)) = y(\delta(v)) \geq x'(\delta(v)) \geq d(v) \geq \lceil d(v) \rceil \). We now consider the case of \(|U| = 2 \). Let \(U = \{v_1, v_2\} \). Since \(d(U) = d(v_1) + d(v_2) \) is odd, \(d(v_1) \neq d(v_2) \) holds, where we assume without loss of generality \(d(v_1) > d(v_2) \). Then

\[
\left\lceil \frac{d(U)}{2} \right\rceil = \left\lceil \frac{d(v_1) + d(v_2)}{2} \right\rceil \leq d(v_1).
\]

We have

\[
x'(E[U]) + x'(\delta(U)) \geq x'(\delta(v_1))
\]

because \(E[U] \cup \delta(U) \supseteq \delta(v_1) \). Since \(x' \) satisfies \(x'(\delta(v_1)) \geq d(v_1) \) by (d), we have

\[
y(E[U]) + y(\delta(U)) \geq x'(E[U]) + x'(\delta(U))
\]

\[
\geq x'(\delta(v_1)) \geq d(v_1) \geq \left\lceil \frac{d(v_1) + d(v_2)}{2} \right\rceil = \left\lceil \frac{d(U)}{2} \right\rceil.
\]

In what follows, we assume that \(|U| \geq 3 \) and \(d(v) \geq \beta \) for all \(v \in U \). Since \(x'(\delta(v)) \geq d(v) \) holds for all \(v \in U \) by (d) for EC\((G, d, +\infty) \), we have

\[
2x'(E[U]) + x'(\delta(U)) = \sum_{v \in U} x'(\delta(v)) \geq d(U).
\]

Therefore

\[
x'(E[U]) + x'(\delta(U)) \geq \frac{d(U) + x'(\delta(U))}{2} \geq \frac{d(U)}{2}.
\]
To show (e), we only have to prove that
\[
\frac{[d(U)/2]}{d(U)/2} = 1 + \frac{1}{d(U)} \leq 1 + \frac{1}{2 \lceil 3\beta/2 \rceil + 1},
\]
or equivalently
\[
d(U) \geq 2 \lceil 3\beta/2 \rceil + 1.
\]
From the assumption, \(d(U) \geq 3\beta\) holds. Moreover, since \(d(U)\) is odd, \(d(U) \geq 3\beta + 1\) if \(3\beta\) is even. This implies (5). \(\Box\)

Theorem 3. Let \(\beta = \min_{e \in E} b(e) \neq 0 b(e)\). Algorithm DOMINATE\((f)\) delivers an approximate solution of a cost within a factor of
\[
\rho = 2 \left(1 + \frac{1}{2 \lceil 3\beta/2 \rceil + 1} \right) \left(\leq \frac{8}{3} \right)
\]
to the b-EDS problem.

Proof. Let \(\bar{x} \in \mathbb{Z}_+^E\) be a vector obtained by algorithm DOMINATE\((f)\). We have already observed that \(\bar{x}\) is a \((b, +\infty)\)-EDS to instance \((G, b, +\infty, w)\). We show that \(\bar{x}\) is a \(\rho\)-approximate solution. We denote by OPT the minimum cost of a \((b, +\infty)\)-EDS for \((G, b, +\infty, w)\). Let \(x^* \in \mathbb{R}_+^E\) be the vector computed in Step 1 of DOMINATE\((f)\). Since EDS\((G, b, +\infty)\) contains a minimum cost \((b, +\infty)\)-EDS, it holds \(w^T x^* \leq \text{OPT}\). By Lemma 1, vector \(2x^*\) satisfies conditions (c) and (d) for EC\((G, d_{x^*}, +\infty)\). Since \(b(e) \geq \beta\) for all \(e \in E\) such that \(b(e) \neq 0\), we see that \(d_{x^*}(v) \geq \beta\) or \(d_{x^*}(v) = 0\) holds for each \(v \in V\). Therefore, from Lemma 2, we have \(\rho x \in \text{EC}(G, d_{x^*}, +\infty)\). Since algorithm DOMINATE\((f)\) outputs a solution \(\bar{x}\) of minimum cost over all vectors in EC\((G, d_{x^*}, +\infty)\), we have \(w^T \bar{x} \leq \rho w^T x^*\), from which \(w^T \bar{x} \leq \rho \text{OPT}\) follows, as required. \(\Box\)

In addition, algorithm DOMINATE\((f)\) achieves a better approximation factor in some special cases. We introduce some results.

Theorem 4. For a demand vector \(b \in \mathbb{Z}_+^E\) such that \(\beta = \min_{e \in E} b(e) \geq 1\), algorithm DOMINATE\((f)\) delivers an approximate solution of a cost within a factor of
\[
\rho = 2 \left(1 + \frac{1}{4\beta + 1} \right) \left(\leq \frac{12}{5} \right)
\]
to the b-EDS problem.

Proof. Let \(x \in \text{EDS}(G, b, +\infty)\) and \(U\) be a subset of \(V\) such that \(|U| \geq 3\) and \(d_x(U) < 4\beta + 1\), where \(d_x \in \mathbb{Z}_+^E\) is the vector constructed from \(x\) in Step 4 of DOMINATE\((f)\). Below we show that the vector \(y = 2x\) satisfies (e) for EC\((G, d_x, +\infty)\) and \(U\). From this fact, we can assume without loss of generality that \(b(U) \geq 4\beta + 1\). Combined with Lemma 1 and the discussion in the proof of Lemma 2, this proves the theorem.

Let \(e \in E[U]\). Then \(\delta(e) \subseteq E[U] \cup \delta(U)\). Hence it holds \(x(E[U]) + x(\delta(U)) \geq x(\delta(e)) \geq b(e) \geq \beta\). Therefore, \(y(E[U]) + y(\delta(U)) \geq 2\beta\). On the other hand, we have \(\lceil d_x(U)/2 \rceil \leq 2\beta\) from the assumption. Combining these inequalities leads to \(y(E[U]) + y(\delta(U)) \geq \lceil d_x(U)/2 \rceil\) as required. \(\Box\)

Theorem 5. DOMINATE\((f)\) is a 2-approximation algorithm for the b-EDS problem in bipartite graphs.

Proof. For bipartite graphs, the edge cover polytopes are determined by only inequalities (a) and (b) [12]. Hence the theorem follows from Lemma 1. \(\Box\)

When \(b\) takes the same value for all edges, a better guarantee can be derived as follows.

Lemma 6. Let \(x \in \mathbb{R}_+^E\) be a vector in EDS\((G, b, +\infty)\). If \(b(e) = \beta \geq 1\) for all \(e \in E\), then \(\rho x\) belongs to EC\((G, d_x, +\infty)\), where \(\rho = 2.1\) for \(\beta = 1\) and \(\rho = 2\) for \(\beta \geq 2\).
Proof. Lemma 1 shows that $2x$ satisfies (c) and (d) for EC(G, d_x, $+\infty$). Therefore, it suffices to prove that ρx satisfies (e) for EC(G, d_x, $+\infty$). Let U be a subset of V such that $d_x(U)$ is odd. As in the proof of Lemma 2, we can assume that $|U| \geq 3$ and $d_x(v) \geq \beta$ holds for all $v \in U$.

Let $x' = 2x$. From the inequalities (d) for EC(G, d_x, $+\infty$) and (b) for EDS(b, $+\infty$) we get that
\[
x'(\delta(u)) + x'(\delta(v)) \geq \begin{cases} 2b(e) + x'(e) & e = (u, v) \in E, \\ d_x(u) + d_x(v) & \text{otherwise.} \end{cases}
\]

By summing up the above inequalities over all pairs of distinct u and v in $U \times U$, we get
\[
(|U| - 1) \sum_{u \in U} x'(\delta(u)) \geq 2b(E[U]) + x'(E[U]) + \sum_{u, v \in U, \langle u, v \rangle \in E} (d_x(u) + d_x(v)).
\]
\[
= 2b(E[U]) + x'(E[U]) + (|U| - 1)d_x(U) - \sum_{u, v \in U, \langle u, v \rangle \in E} (d_x(u) + d_x(v)).
\]

Now, $b(e) = \beta$ for all $e \in E$. Hence $d_x(v) \leq \beta$ for each $v \in V$. This leads to $2b(e) \geq d_x(u) + d_x(v)$ for each $e = (u, v) \in E$, which implies
\[
2b(E[U]) - \sum_{u, v \in U, \langle u, v \rangle \in E} (d_x(u) + d_x(v)) \geq 0.
\]

Therefore, we have
\[
(|U| - 1) \sum_{u \in U} x'(\delta(u)) \geq x'(E[U]) + (|U| - 1)d_x(U). \tag{6}
\]

Recall that $|U| \geq 3$ is assumed. Since $\sum_{u \in U} x'(\delta(u)) = x'(\delta(U)) + 2x'(E[U])$, inequality (6) is equivalent to
\[
(|U| - 1)(x'(\delta(U)) + 2x'(E[U])) \geq x'(E[U]) + (|U| - 1)d_x(U).
\]

Hence
\[
x'(E[U]) + x'(\delta(U)) \geq \frac{|U| - 2x'(\delta(U)) + (|U| - 1)d_x(U)}{2|U| - 3} \geq \frac{|U| - 1)d_x(U)}{2|U| - 3}.
\]

Therefore, we have
\[
\frac{\lceil d_x(U)/2 \rceil}{x'(E[U]) + x'(\delta(U))} \leq \frac{(d_x(U) + 1)/2}{(|U| - 1)d_x(U)/(2|U| - 3)}
\]
\[
= \left(1 + \frac{1}{d_x(U)}\right) \cdot \frac{2|U| - 3}{2|U| - 2}. \tag{7}
\]

We analyze the maximum value of the right-hand side of (7). Since we consider the case where $d_x(v) \geq \beta$ holds for all $v \in U$, $d_x(U) \geq \beta|U|$ holds. Therefore we have
\[
\left(1 + \frac{1}{d_x(U)}\right) \cdot \frac{2|U| - 3}{2|U| - 2} \leq \left(1 + \frac{1}{\beta|U|}\right) \cdot \frac{2|U| - 3}{2|U| - 2}. \tag{8}
\]

For $\beta = 1$, the right-hand side of (8) takes the maximum value $\frac{21}{20}$ when $|U| = 5$. On the other hand, if $\beta \geq 2$, then the right-hand side of (7) is at most 1. Therefore, ρx satisfies (e) for EC(G, d_x). \qed

Lemma 6 directly implies the following theorem.

Theorem 7. Suppose that $b(e) = \beta$ for all $e \in E$. Then algorithm DOMINATE(f) delivers an approximate solution of a cost within a factor of 2.1 if $\beta = 1$ or a factor of 2 if $\beta \geq 2$ to the b-EDS problem.

We now analyze the approximation factor of DOMINATE(f) for the general (b, c)-EDS problem, i.e., when c takes finite values for some edges. In this case, we need to set f to an appropriate value. Let $\beta = \min\{d_x(U) - c(F) | U \subseteq V, F \subseteq \delta(U) - E', d_x(U) - c(F) \text{ is odd and } \geq 3\}$ and $\rho = 2(1 + 1/\beta)$ be the factor. If $f \geq \rho$, we can prove
that \(\rho x_{E-E'} \in EC(G' = (V, E - E'), d, c) \), where \(x \in EDS(G, b, c) \) (the proof is similar to those of Lemmas 1 and 2). Then, algorithm \(\text{DOMINATE}(f) \) achieves the approximation factor of \(f \) because of the following reasons. The cost of output edges in \(E' \) is bounded as

\[
 w^T_{E'} \hat{x}_{E'} \leq w^T_{E'} c_{E'} < f w^T_{E'} x^*_{E'}.
\]

With regard to edges in \(E - E' \), it holds that

\[
 w^T_{E-E'} \hat{x}_{E-E'} \leq \rho w^T_{E-E'} x^*_{E-E'}
\]

from the above-mentioned relation. Hence,

\[
 w^T \hat{x} = w^T_{E'} \hat{x}_{E'} + w^T_{E-E'} \hat{x}_{E-E'} < f w^T x^* \leq f \text{OPT},
\]

where \(\text{OPT} \) denotes the cost of the optimal solution. Notice that \(\rho \) depends on \(f \) because \(f \) decides which edges are added to \(E' \). As we make \(f \) smaller with keeping \(f \geq \rho \), we can obtain a better approximation factor. In particular, \(\text{DOMINATE}(8/3) \) is an 8/3-approximation algorithm.

Theorem 8. \(\text{DOMINATE}(8/3) \) is an 8/3-approximation algorithm for the \((b, c)\)-EDS problem.

We also obtain the same result as in **Theorem 5**.

Theorem 9. \(\text{DOMINATE}(2) \) is a 2-approximation algorithm for the \((b, c)\)-EDS problem in bipartite graphs.

5. Hardness

As hinted in Section 3, we may reflect on the fact that an EDS is an edge cover of a vertex cover by augmenting \(EDS(G, 1, +\infty) \) with variables, \(y(v) \) for all \(v \in V \). Extending this idea to the \((b, c)\)-EDS problem yields the following relaxation, which we call \(EDS_y(G, b, c) \):

\[
 x(\delta(v)) \geq y(v) \quad \text{for each } v \in V,
\]

\[
 y(u) + y(v) \geq b(uv) + x(uv) \quad \text{for each } uv \in E,
\]

\[
 y(v) \geq 0 \quad \text{for each } v \in V,
\]

\[
 c(e) \geq x(e) \geq 0 \quad \text{for each } e \in E.
\]

In an integral solution to the above, the \(x \) variables correspond to a \((b, c)\)-EDS while the \(y \) variables correspond to a \(b \)-vertex cover. It is not difficult to establish that the projection of \(EDS_y(G, b, c) \) onto the \(x \) variables is equivalent to \(EDS(G, b, c) \). In the sequel we do not necessarily explicitly say “the projection of” and refer to \(EDS_y(G, b, c) \) and \(EDS(G, b, c) \) interchangeably.

For the special case of the EDS problem the integrality gap of the relaxation \(EDS_y(G, 1, +\infty) \) is 2.1 [4] and is reduced to 2 [6] by adding the odd-cycle inequalities:

\[
 \sum_{v \in V(C)} y(v) \geq \left\lceil \frac{|C|}{2} \right\rceil \quad \text{for each odd cycle } C, \tag{9}
\]

which are valid for vertex covers. By the results of the previous section, the integrality gap of \(EDS_y(G, b, c) \) is at most \(8/3 \), and this gap is tight even for instances of the \([0, 1]\)-EDS problem: for positive integer \(k \), consider the complete graph on \(3k \) vertices, where \(b(e) = 0 \) and \(w(e) = 1 \) for the edges of \(k \) vertex-disjoint triangles, and \(b(e) = 1 \) and \(w(e) = +\infty \) for all other edges; an optimal fractional solution need only set each edge of the triangles to a value of \(1/4 \), for a total cost of \(3k/4 \), while an integral solution must pick two edges for all but one triangle for a total cost of \(2k - 1 \).

One may naturally wonder if the odd-cycle inequalities may be generalized for \(EDS_y(G, b, c) \); indeed, they may:

\[
 \sum_{v \in V(C)} y(v) \geq \left\lceil \frac{b(C)}{2} \right\rceil \quad \text{for each cycle } C \text{ with } b(C) \text{ odd}, \tag{10}
\]

where we abbreviate \(b(|E|) \) as \(b(C) \). Although we may hope or expect that (10) reduces the gap of \(EDS_y(G, b, c) \), the, perhaps surprising, main result of this section is that (10) does not improve the integrality gap of
We first describe a construction that maps a given vertex cover instance to a candidate solution of the vertex cover instance to a candidate solution of the EDS -EDS instance. Given an instance of \((0, 1, +\infty)\)-EDS, we find it convenient to refer to \(D = \{e \in E \mid b(e) = 1\}\) and use \(D\) and \((0, 1, +\infty)\) interchangeably.

We assume we are given a class of valid inequalities for the vertex cover problem. To ensure full generality we suppose that the inequalities are specified by an oracle \(O = O(G)\) which, given a query vector \(y \in \mathbb{R}^V\), either certifies that \(y\) satisfies the vertex cover inequalities for \(G\) implicitly represented by \(O\) or otherwise returns some inequality that is violated by \(y\). We assume without loss of generality that \(O\) contains the inequalities \(y(u) + y(v) \geq 1\) for all \(uv \in E\), since these may be checked in linear time.

Note that since \(O\) represents valid vertex cover inequalities, we have that \(y \in P_O\) when \(y\) is the incidence vector of a vertex cover.

We are almost in a position to state our main theorem; however, first we must make precise the notion of integrality for the polyhedra under study. Given a \(D\)-EDS instance \(G = (G, D, w)\), we let \(O^{\text{int}}_{D-EDS}(G)\) denote the cost of an optimal integral \(D\)-EDS, whereas \(O^{\text{frac}}_{D-EDS}(G, O) = \min\{w^Ty \mid x \in \mathbb{R}^E\}\) and \(\exists y \in \mathbb{R}^V\) s.t. \((x, y) \in EDS_y(G, D)\). We can now define the integrality gap of the \(D\)-EDS relaxation:

\[
\text{GAP}_{D-EDS}^O = \sup_G \frac{O^{\text{int}}_{D-EDS}(G)}{O^{\text{frac}}_{D-EDS}(G, O)}.
\]

Analogously, for an instance \(G = (G, w)\) of the weighted vertex cover problem, we let \(O^{\text{int}}_{VC}(G)\) denote the cost of an optimal integral vertex cover, whereas \(O^{\text{frac}}_{VC}(G, O) = \min\{w^Ty \mid y \in P_O(G)\}\). Not surprisingly, we let

\[
\text{GAP}_{VC}^O = \sup_G \frac{O^{\text{int}}_{VC}(G)}{O^{\text{frac}}_{VC}(G, O)}.
\]

We are now in a position to state the main result of the section.

Theorem 10. Assume there exists a vertex cover oracle \(O\) and a constant \(\varepsilon > 0\) such that

\[
\text{GAP}_{D-EDS}^O \leq \frac{8}{3} - \varepsilon.
\]

Then there exists another vertex cover oracle \(O'\) and a constant \(\varepsilon' > 0\) such that

\[
\text{GAP}_{VC}^O \leq 2 - \varepsilon'.
\]

Moreover, if a query to \(O(V, E)\) takes time \(t(|V|, |E|)\), then a query to the oracle \(O'(V', E')\) takes time \(t(3|V'|, 9|E'| + 3|V'|) + O(|V'| + |E'|)\).

Proof. We first describe a construction that maps a given vertex cover instance to a \(D\)-EDS instance, as well as a candidate solution of the vertex cover instance to a candidate solution of the \(D\)-EDS instance.

This transformation will be used in constructing the oracle \(O'\) using the given oracle \(O\). Let \(G' = (G' = (V', E'), w')\) be a vertex cover instance, and let \(y' \in \mathbb{R}^V\). We will describe a construction, represented by the overloaded map \(f\), which gives a \(D\)-EDS instance \(G = f(G') = (G = (V, E), D, w, y)\) and a vector \(y = f(y') \in \mathbb{R}^V\). We define \(V = \{v^j : v \in V', 1 \leq j \leq 3\}\). Furthermore \(E = E_1 \cup E_2\), where \(E_1 = \{v^1v^2, v^2v^3, v^3v^1 \mid v \in V'\}\) and \(E_2 = \{v^jv^{j'} \mid 1 \leq j, j' \leq 3, uv \in E'\}\). In other words, \(G\) is a graph with \(3|V'|\) vertices, where each vertex of \(G'\) is represented by a triangle in \(G\); if \(uv\) is an edge in \(E'\) then \(G\) has all the nine edges between the two sets of three vertices of \(G\) representing \(u\) and \(v\), respectively. We also let \(D = E_2\) and define \(w(e) = w'(v)\) if \(e = v^jv^{j'} \in E_1\) \((j \neq j')\), and \(w(e) = +\infty\) if \(e \in E_2\). Moreover, we let \(y(v^j) = y'(v)\) for every \(v \in V'\) and \(1 \leq j \leq 3\).
We now suppose that \(\mathcal{O} \) is an oracle as given by the statement of the theorem and that we are given an instance \(\mathcal{G}' \) of vertex cover along with a vector \(y' \in \mathbb{R}^{V'} \). We shall construct \(\mathcal{O}' \) by simply applying \(\mathcal{O}(f(\mathcal{G}')) \) to the point \(f(y') \). See Algorithm 2 for details. The time bound claimed in the theorem follows since the oracle \(\mathcal{O}' \) needs to construct a graph with \(3|V'| \) vertices and \(|E| = 9|E'| + 3|V'| \) edges.

Algorithm 2 Separation algorithm for the oracle \(\mathcal{O}' \)

Input: A vertex cover instance \(\mathcal{G}' = (G' = (V', E')) \), \(y' \in \mathbb{R}^{V'} \).

Output: “feasible” or an inequality violated by \(y' \).

Step 1: Construct \(G = f(\mathcal{G}') \) and \(y = f(y') \).

Step 2: Run the separation algorithm for the oracle \(\mathcal{O} \) with input \(G \) and \(y \).

Step 3: If \(y \) is feasible for \(G \), then \(\mathcal{O}' \) returns “feasible.”

Step 4: If \(y \) violates an inequality \(\sum_{v \in V'} \sum_{j=1}^{3} a(v^j) y(v^j) \geq a_0 \), then \(\mathcal{O}' \) returns that \(y' \) violates the inequality

\[
\sum_{v \in V'} \left(\sum_{j=1}^{3} a(v^j) \right) y'(v) \geq a_0.
\]

The correctness of Steps 3 and 4 of Algorithm 2 follows from the definition of \(f \):

\[
\sum_{v \in V'} \sum_{j=1}^{3} a(v^j) y(v^j) = \sum_{v \in V'} \left(\sum_{j=1}^{3} a(v^j) \right) y'(v),
\]

hence we need only show that each inequality \(\sum_{v \in V'} (\sum_{j=1}^{3} a(v^j)) y'(v) \geq a_0 \) is satisfied when \(y' \) is the incidence vector of an integral vertex cover. Note that since \(y' \) is a vertex cover in \(G' \), \(y \) is a vertex cover in \(G \). Moreover, since \(\mathcal{O} \) is a valid oracle, we must have \(\sum_{v \in V'} \sum_{j=1}^{3} a(v^j) y(v^j) \geq a_0 \), hence the result follows from (11).

Next we address the relationship between the gaps induced by \(\mathcal{O} \) and \(\mathcal{O}' \) by showing that for a vertex cover instance \(\mathcal{G}' \):

(i) \(\text{OPT}_{D-\text{EDS}}^{\text{int}}(f(\mathcal{G}')) = 2 \cdot \text{OPT}_{\text{VC}}^{\text{int}}(\mathcal{G}') \), and

(ii) \(\text{OPT}_{D-\text{EDS}}^{\text{frac}}(f(\mathcal{G}'), \mathcal{O}) \leq 3/2 \cdot \text{OPT}_{\text{VC}}^{\text{frac}}(\mathcal{G}', \mathcal{O}) \).

Proof of Claim (i). Let \(V^* \subseteq V' \) be an optimal integer vertex cover of \(\mathcal{G}' \), i.e. \(w'(V^*) = \text{OPT}_{\text{VC}}^{\text{int}}(\mathcal{G}') \). Then \(E^* = \{ v^1 v^2, v^2 v^3 \mid v \in V^* \} \) is an integral \(D \)-EDS for \(G \) of cost \(2 \cdot \text{OPT}_{\text{VC}}^{\text{int}}(\mathcal{G}') \). Therefore \(\text{OPT}_{D-\text{EDS}}^{\text{int}}(f(\mathcal{G}')) \leq 2 \cdot \text{OPT}_{\text{VC}}^{\text{int}}(\mathcal{G}') \).

Now let \(E^* \subseteq E \) be an optimal integral \(D \)-EDS of the instance \(f(\mathcal{G}') \). Then \(E^* \subseteq E_1 \) since edges in \(E_2 \) have infinite cost. We claim that \(E^* \) contains either 0 or 2 edges from each triangle representing a vertex \(v \) of \(G' \). If \(E^* \) contained all three edges \(v^1 v^2, v^2 v^3 \) and \(v^3 v^1 \), then just two of these edges cover the same set of edges of \(G \) and \(E^* \) would not be optimal.

Suppose w.l.o.g. \(E^* \) contains \(v^1 v^2 \) but not \(v^2 v^3 \) and \(v^3 v^1 \), then \(E^* \) must cover the edges \(u^j v^3 \) for all \(u \in V' \) such that \(uv \in E' \) and \(1 \leq j \leq 3 \). Hence \(E^* \) contains at least two edges from each triangle representing a vertex \(u \) which is adjacent to \(v \) in \(G' \). But then all edges in \(D \) which are incident with \(v^1 \) or \(v^2 \) are covered even if we remove the edge \(v^1 v^2 \) from \(E^* \), contradicting the optimality of \(E^* \). Therefore \(E^* \) contains either 0 or 2 edges from each triangle representing a vertex \(v \) of \(G' \). Thus \(V^* = \{ v \in V \mid \exists j, j' \text{ s.t. } x_{v^j v^{j'}} = 1 \} \) is a vertex cover of \(G' \). Moreover, we have \(c'(V^*) = \frac{1}{2} c(E^*) \) and therefore

\[
\text{OPT}_{\text{VC}}^{\text{int}}(\mathcal{G}') \leq \frac{1}{2} \text{OPT}_{D-\text{EDS}}^{\text{int}}(f(\mathcal{G}')),
\]

proving Claim (i).
Proof of Claim (ii). Let \(y^* \) be a minimizer of \(\min \{ w^T y \mid y \in \mathcal{P}_{O'(G')} \} \), i.e., \(w^T y^* = \text{OPT}^{\text{frac}}_{\text{VC}}(G', O') \). We define a fractional \(D - \text{EDS} \) in \(f(G') \) by letting \(x(e) = 0 \) for all \(e \in E_2 \) and \(x(v^j v'^j) = \frac{1}{2} y^*(v) \) for all \(v \in V', 1 \leq j < j' \leq 3 \). Certainly \(w^T x = \frac{3}{2} w^T y^* = \frac{3}{2} \text{OPT}^{\text{frac}}_{\text{VC}}(G', O') \).

We let \(y = f(y^*) \). Since \(y^* \in \mathcal{P}_{O'(G')} \), we have \(y \in \mathcal{P}_{O(V', E_2)} \), and consequently \(y(u^i) + y(v^j) \geq 1 \) for every \(u^i v^j \in E_2 \). Moreover, \(x(\delta(v^j)) = y(v^j) \) for every \(v^j \in V \), which when combined with the preceding inequality yields,

\[
y(u^i) + y(v^j) \geq b(u^i v^j) + x(u^i v^j) \quad \text{for every } u^i v^j \in E.
\]

Thus \((x, y) \in \text{EDS}^{G}_{O}(G, E_2) \), and since

\[
\text{OPT}^{\text{frac}}_{D-\text{EDS}}(G, O) \leq w^T x = 3/2 \cdot \text{OPT}^{\text{frac}}_{\text{VC}}(G', O'),
\]

Claim (ii) is proved.

Finally, for any \(\delta > 0 \), we may select a vertex cover instance \(G' \) such that:

\[
\text{GAP}^{\text{VC}}_{\text{VC}}(G', O) \leq \frac{\text{OPT}^{\text{int}}_{\text{VC}}(G')}{\text{OPT}^{\text{frac}}_{\text{VC}}(G', O')} + \delta.
\]

We now use the assumption \(\text{GAP}^{\text{D-EDS}}_{D-\text{EDS}} \leq \frac{8}{3} - \varepsilon \) as well as Claim (i) and Claim (ii) to obtain that

\[
\text{GAP}^{\text{VC}}_{\text{VC}}(G', O) \leq \frac{\text{OPT}^{\text{int}}_{\text{VC}}(G')}{\text{OPT}^{\text{frac}}_{\text{VC}}(G', O')} + \delta \\
\leq \frac{\frac{1}{2} \cdot \text{OPT}^{\text{int}}_{D-\text{EDS}}(f(G'))}{\frac{3}{2} \cdot \text{OPT}^{\text{frac}}_{D-\text{EDS}}(f(G'), O')} + \delta \\
\leq \frac{\frac{3}{4} \text{GAP}^{\text{D-EDS}}_{D-\text{EDS}}}{\frac{3}{4} \text{GAP}^{\text{D-EDS}}_{D-\text{EDS}}} + \delta \\
\leq 2 - \frac{3}{4} \varepsilon + \delta,
\]

which proves the theorem. \(\square \)

In the beginning of this section we mentioned that the odd cycle inequalities (9) reduce the integrality gap of the EDS relaxation, and wondered if the corresponding equalities (10) for \(b - \text{EDS} \) would achieve a similar result. We are now able, using Theorem 10, to show, that these inequalities do not improve the gap of \(b - \text{EDS} \) beyond 8/3.

Let us assume that \(O \) is an oracle for (10) such that \(\text{GAP}^{\text{D-EDS}}_{D-\text{EDS}} \leq \frac{8}{3} - \varepsilon \). Now it is not difficult to show that the oracle \(O' \) constructed in the proof of Theorem 10 separates exactly the odd cycle inequalities (9). However, Arora et al. [2, Section 4] show that these inequalities do not improve the integrality gap of vertex cover to \(2 - \varepsilon \) for any constant \(\varepsilon > 0 \), contradicting the conclusion of Theorem 10.

Corollary 11. Let \(O \) be an oracle for the odd cycle inequalities (10). For any \(\varepsilon > 0 \), \(\text{GAP}^{\text{D-EDS}}_{D-\text{EDS}} > \frac{8}{3} - \varepsilon \).

6. Conclusion

We introduced the \((b, c) - \text{EDS} \) problem and proposed an approximation algorithm, which achieves a factor of 8/3 for general graphs by utilizing the relationship between the polytopes \(\text{EDS}(G, b, c) \) and \(\text{EC}(G, d, c) \). Moreover, we showed that no polynomially separable class of valid \(b - \)vertex cover inequalities on the \(y \) variables is likely to reduce the integrality gap of \(\text{EDS}(G, b, c) \) beyond 8/3. In fact, our result and a result by Arora et al. [2] show that adding a generalization of odd-cycle inequalities does not improve the gap.

Acknowledgements

We would like to thank two anonymous referees for valuable comments.
References