The impact of human capital on labour productivity in manufacturing sectors of the European Union

FRANK CORVERS

Research Centre for Education and the Labour Market, Maastricht University,
P.O. Box 616, NL-6200 MD Maastricht, The Netherlands

The effects of human capital on both the level and growth of labour productivity in manufacturing sectors in seven member states of the European Union are analysed, distinguishing between four effects of human capital: worker, allocative, diffusion and research. Human capital is represented by the shares of intermediate and highly-skilled workers in the workforce of a sector. It is shown that the manufacturing sectors can be divided into three classes of sectors with different intensities of highly-skilled workers: low-, medium- and high-skill sectors. The estimation results show that both intermediate and highly-skilled labour have a positive effect on the labour productivity of a sector, although the effect is only significant for highly-skilled labour. Moreover, there are indications of underinvestment of human capital in some manufacturing sectors. These sectors could improve their competitive position by raising the employment shares of intermediate and highly-skilled labour. Finally, intermediate-skilled labour has a significantly positive effect on the growth in sectoral labour productivity.

1 INTRODUCTION

Many recent publications in economic literature on export performance seem to reflect the worries of governments about the strength of their countries' international competitiveness (e.g. Potter, 1990 and European Commission, 1994). However, there is no general agreement on how competitiveness ought to be defined. Definitions are based on a variety of indicators such as labour productivity, cost advantages, product quality, export/import ratios or exports minus imports (see Fagerberg, 1988, Frances and Tharakan, 1989, Niosi, 1991, Corvers and De Grip, 1996.).

This paper asks whether the factor input of human capital at the sector level matters for the international competitiveness of manufacturing sectors, and how it matters. Human capital is here regarded as an important source of international competitiveness, because it is supposed to increase the productivity of workers. Therefore the paper regards labour productivity as the indicator of international competitiveness. The input of human capital is represented by the proportions of intermediate and highly-skilled workers in the workforce of a sector, whereas the sectoral labour productivity is represented by the value added per worker.

Although it is widely accepted that the distinction between the intermediate skilled 'craft' workers and highly-skilled 'professionals' is very important for explaining productivity differences (e.g. Praus, 1981, Daly, 1986, Campbell and Warner, 1991 and Lundley, 1991), this distinction has not been made yet in the empirical research on the effects of human capital on productivity. This paper analyses the effects of the employment shares of intermediate and highly-skilled workers per sector on the sectoral productivity level and the sectoral productivity growth. Four effects of human capital on labour productivity are distinguished: worker, allocative, diffusion and research.

The empirical analysis is applied to 15 manufacturing sectors in seven member states \(^1\) of the European Union. Since the labour productivity of a sector is a measure of

\(^1\) Belgium, Germany, Denmark, Spain, France, Great Britain and the Netherlands are included. For data reasons, other countries are excluded.
competitiveness, an increase in the employment shares of intermediate and highly-skilled workers may improve the competitive position of manufacturing sectors. If the employment shares of intermediate and highly-skilled labour are either too small or too large relative to the effects on sectoral labour productivity, this may point to underinvestment or overinvestment of human capital. Other variables included in the analysis are capital intensity and average firm size in the sector.

The next section offers a critical survey of literature with regard to the impact of human capital on labour productivity. The third section discusses the model that allows for the effects of intermediate and highly-skilled workers on labour productivity at the sector level. Section IV outlines the data concerning the employment shares of intermediate and highly-skilled labour across the manufacturing sectors of the European Union between 1988 and 1991. Section V reports on the results of the empirical analysis. Finally, Section VI presents some conclusions.

II A CRITICAL SURVEY OF LITERATURE

Human capital theory explains the labour productivity level by the workers' level of educational attainment (see, e.g., Mincer, 1974; Becker, 1975). Labour productivity is according to the Ricardian theory of international trade, an important determinant of trade between countries (e.g., Dornbusch et al., 1977). Empirical research on the Ricardian model by MacDougall (1951), Stern (1962) and Balassa (1963) provides remarkably good results in explaining trade performance by relative labour productivity levels at sector level. However, this empirical research does not enable conclusions to be drawn as to the factors that influence labour productivity (see also Leamer, 1992).

Four different effects of human capital on labour productivity can be found in economic literature: worker, allocative, diffusion, and research (see also Corvers, 1994). The effects are based on the studies of Nelson and Phelps (1966), Welch (1970), Ram (1980), and Pencavel (1991), inter alia. These effects are, however, often treated separately in both theoretical and empirical studies. In this section we shall argue that the first and second of these effects underpin the relevance of human capital for productivity levels whereas the latter two underpin the relevance of human capital for productivity growth.

The first of these, the worker effect (or 'own productivity' effect) has been explained by Welch (1970). He assumes that firms produce only one good with the production factor education, and that other resources are given. The worker effect refers to the positive marginal productivity of education with respect to that particular good. Workers with a higher level of education are assumed to be more efficient in working with the resources at hand, i.e., these workers produce more physical output. In other words, education increases the effective labour input from the hours worked. Therefore, a better-educated labour force shifts the production possibility curve outwards. According to Welch (1970, p. 43), the worker effect is presumably related to the complexity of the physical production process. The more complex the production technique is, the more 'room' is left for the worker effect to improve the (technical) efficiency of production. An increase in the proportion of intermediate or highly-skilled workers relative to low-skilled workers can increase the productivity level in physical units.

Second, the allocative effect points to the greater (allocative) efficiency of better educated workers in allocating all input factors to the production process (including education itself) between the alternative uses. Welch (1970) gives two examples of the allocative effect. If there is one fixed input factor to produce two goods (or varieties), education may improve the total revenues of firms by means of a better allocation of the input factor between the alternative outputs. Although the production process is technically efficient because the firm produces on the production possibility curve (expressed in physical units), workers have more knowledge of how to maximize the marginal value product (expressed in money units) of the input factor. Total revenues are maximized if the marginal value product of the input factor is equalized for all goods. Another allocative effect is present if, in addition to education as an input factor two (or more) other inputs are included in the production function. If just one good is produced with two inputs, education may also help to select the efficient quantities of inputs. In equilibrium, the marginal value product of the inputs should equal the price of the inputs. In fact, education seems to provide the skills to make better decisions based on the available information. This is also stated by Ram (1980, p. 366): "Education generally has the effect of lowering the (marginal) costs of acquiring production-related information and of raising the (marginal) benefits of such information." As a result of the allocative effect an increase in the relative proportions of intermediate and highly-skilled is expected to lead to a higher productivity level in money units.

Third, the diffusion effect stresses that better educated workers are more able to adapt to technological change and will introduce new production techniques more quickly. Nelson and Phelps (1966) state that 'educated people make good innovators so that education speeds the process of technological diffusion' (see also Bartel and Lichtenberg, 1987). Moreover, Nelson and Phelps (1966) stress the role of receiving, decoding and understanding information in performing a job. A higher level of education increases the

2 In fact the diffusion effect can be regarded as a special case of the allocation effect (see Welch, 1970).
ability to discriminate between more and less profitable innovations and reduces the uncertainty about investment decisions with regard to new processes and products. Therefore education increases the probability of successful and early adoption of innovations. Higher proportions of intermediate and highly-skilled workers, relative to low-skilled workers, would be expected to lead to more rapid and successful adoption of innovations and higher productivity growth.

Fourth, the research effect refers to the role of higher education as an important input factor in research and development (R&D) activities. R&D, in turn, is a key factor for technological progress and productivity growth (see, e.g., the endogenous growth models in Romer, 1990 and Grossman and Helpman, 1992). Since R&D activities are very complex, a relatively large proportion of intermediate and highly-skilled workers is a prerequisite to increase technological knowledge and achieve productivity growth (see also Englander and Gurney, 1994).

Previous empirical research on the above effects focused on the agricultural sector in the USA (for a discussion see Corvers, 1994, and Corvers et al., 1995). Huffman (1977) does not find a positive effect of farmers’ education on corn yields in agricultural firms. This implies that he does not find evidence for a productivity increase due to the worker effect. However, his empirical study reveals that education increases the use of nitrogen as a new input factor, which points to a diffusion effect of human capital. On the other hand, Fane (1975) finds evidence for the allocative effect in managerial decisions on the purchasing of factor inputs and the choice of products to produce. He concludes that farmers with above average levels of education operate closer to the point of cost minimization. This points to a higher degree of allocative efficiency due to education. Lockheed (1987) gives an overview of a number of studies to test the hypothesis that higher levels of formal education increase farmers’ efficiency. These studies used data sets on agricultural sectors in developing countries. By computing a weighted average of productivity increases found in various studies, he concluded that farm productivity increased by 7.4% where a farmer has four years of elementary education as opposed to none. However, it is not clear to what extent this increase is due to the worker effect or the allocative effect. Moreover, the productivity increase in the studies listed by Lockheed (1987) is only large if farms are confronted with technological change (i.e., diffusion effect).

Schultz (1975), in a review of empirical research on the impact of education on innovative ability, discusses some studies which reveal that better educated immigrants who had been farmers previously and then enter a country’s agricultural sector, are more successful in farming than their less educated colleagues. Schultz finds relatively large returns to investments in initial schooling where there is a disequilibrium, for example due to changing technology (returns on investment being measured, e.g., by crop yields in agricultural sectors). This points to the relevance of the diffusion effect. Later empirical research on the relationship between human capital and technological diffusion confirms this conclusion (Huffman, 1977, Ram, 1980, Wozniak, 1984, 1987, Bartel and Lichtenberg, 1987, Mincer, 1989, Groot and De Groot, 1991). Although there is little direct evidence on the research effect (see McMahon, 1984, Lepsonen, 1995), human capital seems to be an important input factor in complex production processes such as R&D (Pencavel, 1991, Berendsen et al., 1995). There is, however, abundant evidence that R&D efforts increase productivity growth (Maresse and Sassensou, 1991, Mohmen, 1992, Verspagen, 1995).

It can be concluded that the empirical evidence for the worker effect and the allocative effect is not yet convincing, whereas the diffusion effect seems to be relevant where there is technological change. Not much empirical research has been done regarding the research effect. Moreover, the evidence presented usually does not differentiate between the four effects of human capital, and does not analyse the effects on sectoral labour productivity of intermediate-skilled workers and highly-skilled workers separately.

III OUTLINE OF THE MODEL

This section aims to develop a model which allows for the four effects of human capital, which have been mentioned above, on the labour productivity of sectors. First, a model is developed which allows for the worker and the allocative effect of intermediate and highly-skilled labour on the productivity level of a sector. Next, the model is adjusted to estimate the diffusion and the research effect of intermediate and highly-skilled labour on the productivity growth of a sector.

Suppose that firm \(i \) produces net output \(Y_i \) according to the Cobb–Douglas production function of Equation (1) with \(L_i \) units of labour and \(K_i \) units of physical capital, and that the efficiency parameter \(A \) is given. Moreover, \(\alpha \) and \(\beta \) represent the output elasticities of physical capital and labour, respectively.

\[
Y_i = AK_i^\alpha L_i^\beta
\]

The average labour productivity of a sector can be found by aggregation of \(N \) firms of the sector, assuming equal firm sizes (i.e., \(Y \sim Y_i, K = K_i, L = L_i \), see Davies and Caves, 1987)

\[
\frac{Y}{L} = \frac{NY}{NL} = \frac{NAK_i^\alpha L_i^\beta}{NL} = A \left(\frac{K_i}{L_i} \right)^{\alpha} L_i^{\beta - 1}
\]
Equation (2) shows that the labour productivity of a sector depends on the efficiency parameter, the sector's capital intensity (which equals the capital intensity of a firm) and the average firm size. From Equation (2) it follows that if constant returns to scale holds, the average firm size plays no role (since $x + \beta = 1$).

The L units of labour in a sector can be corrected for the inputs of human capital. This results in the effective labour input L', which may allow for the various characteristics of workers with regard to their human capital, including the years of initial schooling, participation in training courses, years of experience and tenure, etc. There are various ways to find the effective labour input (see e.g. Fallon, 1987). Here the effective labour input L' is represented by a Cobb-Douglas function with the employment shares of low, intermediate and highly-skilled labour (LS, IS and HS respectively) as the input variables. The employment shares of intermediate and highly-skilled workers per sector are used as an approximation for the input of human capital. The human capital inputs mentioned above are not incorporated in this study, but they can easily be incorporated if data on aspects such as training are available. The following Cobb-Douglas form of effective labour input will be used:

$$L' = L \times LS^{\theta_L} IS^{\theta_I} HS^{\theta_H}$$

Correcting Equation (2) for effective labour input according to the above equation, substituting LS for $(1 - IS - HS)$ and assuming that $\theta_I = 1 - \theta_H - \theta_H$ results in the following equation:

$$\frac{Y}{L} = A \left(\frac{K}{L} \right)^{\beta - 1} (1 - IS - HS)^{\theta_I - 1 - \theta_H} IS^{\theta_I} HS^{\theta_H}$$

Taking the logarithm of both sides results in Equation (5):

$$\ln \frac{Y}{L} = \ln A + z \ln \frac{K}{L} + (z + \beta - 1) \ln L + \beta \theta_I \ln IS + \beta \theta_H \ln HS$$

The above equation is appropriate to estimate the effects of human capital on the productivity level of sectors. These effects are represented by the coefficients θ_I and θ_H of intermediate-skilled and highly-skilled labour, respectively. If net output is measured in values instead of volumes as in this paper, the worker effect and the allocative effect cannot be distinguished from each other (see also Welch, 1970). As stated before, the worker effect of human capital increases net output per worker due to a larger net output in physical units whereas the allocative effect leads to a larger net output in money units. The coefficients θ_I and θ_H are equal to zero if human capital, represented by the employment shares of intermediate and highly-skilled workers, does not have a combined worker and allocative effect on sectoral labour productivity.

The elasticity of sectoral labour productivity with respect to highly-skilled labour, which equals the output elasticity of highly-skilled labour, is found by differentiating Equation (5) to the logarithm of HS^h:

$$\frac{d \ln (Y/L)}{d \ln HS} = \frac{d (Y/L)}{d IS} \frac{HS}{Y/L} = \frac{\theta_H (1 - IS) - HS (1 - \theta_H)}{(1 - IS - HS)}$$

It follows that the output elasticities of both intermediate-skilled and highly-skilled labour are positive as long as $\theta_H > HS$ and $\theta_H > IS$. Notice that the marginal productivities of highly-skilled labour $d(Y/L)/dHS$, and intermediate-skilled labour, $d(Y/L)/dIS$ are zero if the sectoral labour productivity is maximized. Thus, in the Cobb-Douglas form of the effective labour input, there are opportunities for increasing the labour productivity of a sector if the effect of highly-skilled (or intermediate-skilled) labour on the sectoral labour productivity is larger than the employment share of highly-skilled (or intermediate-skilled) labour. However, the neoclassical theory of production assumes profit maximization rather than the maximization of labour productivity. To maximize profits with perfectly competitive labour and product markets, the marginal productivities of intermediate and highly-skilled workers have to be equal to the respective real wages. If firms have monopolistic power over the labour market and/or monopolistic power in the product market, the marginal productivity exceeds the real wage (see, e.g. Hartog, 1992 and Corvers, 1994). Therefore, the marginal productivities of both intermediate and highly-skilled labour should be positive, which implies that $\theta_H > HS$ and $\theta_H > IS$ in case of profit maximization.

Next the diffusion and the research effect on the productivity growth of a sector are incorporated in the model. The two effects can be highlighted by assuming that the efficiency parameter A, which indicates the level of technology actually employed in production (Nelson and Phelps, 1966) is the only factor which varies over time (represented by t), i.e. the growth rates of the factor inputs of physical capital and intermediate and highly-skilled labour are assumed to

4 The major disadvantage of the approach of aggregating human capital inputs is that it is assumed that the separability assumption holds, i.e., the assumption that the levels of non-labour inputs, such as physical capital, have no impact on the relative marginal productivities of the human capital inputs (see, e.g. Fallon, 1987 and Corvers, 1994).

6 Differentiation to the logarithm of IS leads to a similar result.

7 As has been argued above, this effect consists of both the worker and the allocative effect.
be zero. The efficiency parameter can be modelled as follows (see e.g. Nelson and Phelps, 1966)

$$A(t) = A_0 e^{at}$$

(7)

In the above equation, g represents the rate of increase in the efficiency parameter. The next equation is obtained by substituting Equation (7) into (5), differentiating the resulting equation with respect to t and rewriting the result to solve for q.

$$q = \frac{\frac{d}{dt} \left(\frac{Y}{L} \right)}{\frac{Y}{L}} = \frac{dA(t)/dt}{A(t)}$$

(8)

It follows that the productivity of a sector also increases at growth rate g. If the diffusion and research effect of human capital are to be incorporated into the last equation, the growth in sectoral productivity has to be dependent on the employment share of both intermediate and highly-skilled workers. Nelson and Phelps (1966) state that the diffusion of technological knowledge depends on the product of the gap between the level of available technology $T(t)$ and the level of technology in practice $A(t)$ on the one hand, and the human capital intensity of production on the other. The technological gap, which is represented by GAP, can be defined as $(T(t) - A(t))/A(t)$ Therefore this paper defines the diffusion effect as IS^*GAP and HS^*GAP, for the diffusion of technological knowledge by intermediate and highly-skilled labour, respectively. Moreover, sectoral productivity levels may converge, or diverge, for reasons other than the diffusion effect (see Verspagen, 1992). Therefore the technological gap is included in the subsequent analysis as an independent variable to explain productivity growth. Furthermore, the research effect points to the relevance of the employment shares of both intermediate and highly-skilled labour for productivity growth. Although only a portion of the intermediate and highly-skilled workers are employed in R&D activities, it is assumed that the productivity growth of a sector is linearly dependent on the employment shares of both intermediate and highly-skilled labour. Explaining the productivity growth of a sector by the diffusion and the research effect results in the following equation:

$$g = \gamma_{RI}IS + \gamma_{RH}HS + \gamma_{DI}IS^*GAP + \gamma_{DH}HS^*GAP + \gamma_6GAP$$

(9)

The diffusion effect of intermediate and highly-skilled workers is represented by γ_{DI} and γ_{DH}, respectively. Moreover, the research effect of intermediate and highly-skilled workers is represented by γ_{RI} and γ_{RH}. Finally, γ_6 indicates the extent to which the technological gap leads to a convergence or divergence of sectoral productivity. The above equation is appropriate for estimating the diffusion and research effect on the productivity growth of sectors.

IV DATA OVERVIEW

This section presents the employment shares of intermediate and highly-skilled workers, which will be used for the regression analysis in the next section. It begins with a ranking of the employment shares of intermediate and highly-skilled labour for the 15 manufacturing sectors of each country in the sample, followed by a discussion of the level and the growth of the employment shares in each country in the period 1988 to 1991.

The Data Appendix shows the employment shares of intermediate and highly-skilled workers per sector for seven countries of the European Union in 1988. For each country, the sectors are ranked according to the employment share of highly-skilled workers. Ranking the sectors according to the employment share of intermediate-skilled workers would result in a rank order of sectors that is less similar across countries. The following high-skill sectors were selected from the sector rank orders: chemicals (CHE), electrical machinery (ELE), instruments (OPT) and machinery (MAC). The cross-country average employment share of highly-skilled workers in the high-skill sectors is at least 0.15, and the average employment share of low-skilled workers in the high-skill sectors is never greater than 0.50.

In addition to this, it is possible to identify four medium-skill sectors: petroleum (PET), transport (TRA), paper (PAP) and basic metals (BMI). In the medium-skill sectors, the cross-country average employment share of highly-skilled workers is between 0.10 and 0.15, and the average employment share of low-skilled workers is between 0.50 and 0.60. The remaining sectors are termed the 'low-skill' sectors. In these sectors, the average employment share of highly-skilled workers is smaller than 0.10, and the average employment share of low-skilled workers is larger than 0.60.

However, two points should be noticed with regard to the classification of sectors by their skill intensity. First, some...
sectors of a particular country are not ranked according to the above classification. The rank order of low-skill, medium-skill and high-skill sectors fits perfectly well for Spain and France. However, in Belgium the medium-skill transport sector (TRA) has a small employment share of highly-skilled workers, whereas the low-skill food (FOO) and rubber and plastic (RUP) sectors have large employment shares of highly-skilled workers. In Germany the medium-skill basic metals sector (BMI) has a small employment share of highly-skilled workers. On the other hand, the low-skill wood sector (WOO) and other manufacturing industries (OMA) have large employment shares of highly-skilled workers. In Denmark the medium-skill basic metal (BMI) and petroleum (PET) sectors have large employment shares of highly-skilled workers, whereas the medium-skill transport sector (TRA) has a small employment share of highly-skilled workers. Furthermore, in Great Britain the medium-skill petroleum sector (PET) has a large employment share of highly-skilled workers. Finally, in the Netherlands the medium-skill petroleum (PET) and transport (TRA) sectors have large employment shares of highly-skilled workers whereas the low-skill non-metallic sector (NME) has a large employment share of highly-skilled workers.

Second, although the rankings of sectors according to the employment shares of highly-skilled workers are relatively similar across countries, the actual employment shares of intermediate and highly-skilled workers themselves can be very different across countries (see the last two figures in the Data Appendix). There are particularly striking differences between the employment shares of intermediate-skilled workers in France and those in Germany and Denmark, the countries with by far the largest employment share of intermediate-skilled workers. The employment shares of highly-skilled workers are largest in Germany and Belgium, and smallest in Spain. The differences between the employment shares of highly-skilled workers in the remaining countries are small (about 0.02 at most).

Furthermore the last two figures in the Data Appendix show that between 1988 and 1991 the employment shares of both intermediate and highly-skilled workers increased in almost all countries in the sample. Apart from Belgium and Germany the growth rates of the employment shares of intermediate and highly-skilled workers do not differ very much between countries. Belgium exhibits a relatively large growth of highly-skilled workers, whereas Germany had a relatively large growth of intermediate-skilled workers.

V Estimation Results

This section presents the results of estimating the worker and the allocative effect on sectoral productivity levels on the one hand and the diffusion and the research effect on productivity growth on the other hand. These effects have been discussed in the introduction to this paper while Equations (5) and (9), which have been used to estimate these effects, were derived in Section III. As far as possible, my estimates of these equations will be compared with those in other empirical studies. Following these estimation results, some conclusions will be drawn with regard to underinvestment or overinvestment of human capital as indicated by relatively small or relatively large employment shares of intermediate and highly-skilled workers.

The cross-section regression analysis of this paper might break down if the production functions differ between sectors. It would be theoretically preferable to regress the value added per worker in one particular sector on the variables mentioned above. This was not possible since only seven observations were available for each sector. Therefore it is assumed that the differences between the production functions are averaged out in the sample of sectors (see also Davies and Caves 1987). Moreover, authors such as the petroleum refineries (PET) and other manufacturing industries (OMA) sectors are not included in the sample, since the value-added per worker and capital intensity of these sectors vary widely between countries. The regressions were carried out for a pooled sample of 13 manufacturing sectors of seven countries.

Table 1 shows the results when least squares regressions are applied to Equations (5) and (9) in a dummy variable model (see Judge et al. 1985). The reference year for equation (5) is either 1988 or 1991, while Equation (9) covers the period between 1988 and 1991. The first column presents the variables that are incorporated into equations (5) and (9). The variable F indicates the constant term. The Netherlands is the reference country, so the dummy variable of the Netherlands has been omitted. The second, third and fourth columns of Table 1 show the estimation results of Equation (5). The estimated coefficients of intermediate (IS) and highly-skilled (HIS) labour indicate the worker and allocative effect. The second and the third columns refer to 1988 whereas the fourth column refers to 1991. Since no data were available for the average firm size (L) of the manufacturing sectors of France these sectors are excluded from the observations of the second column. The third column shows the estimation results when France is included, but the average firm size is excluded as an explanatory.

12 The only exceptions are the zero growth rates of the average employment share of highly-skilled workers in France between 1988 and 1989, and of the average employment share of intermediate-skilled workers in Denmark between 1988 and 1991.

13 Since the coefficients of capital intensity, average firm size and the shares of low-, intermediate- and highly-skilled labour are constrained as shown by Equation (5), non-linear least squares regression is applied to estimate the coefficients of Equation (5) directly. Equation (9) is estimated by ordinary least squares regression. The results of the estimations for 1989 and 1990 are available on request from the authors.
Table 1 Estimation results for factors explaining sectoral labour productiv

<table>
<thead>
<tr>
<th>Variable</th>
<th>$(Y/L)_{b9}$</th>
<th>$(Y/L)_{h8}$</th>
<th>$(Y/L)_{b1}$</th>
<th>$d(Y/L)/d_{h8 - y1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>6.54</td>
<td>6.74</td>
<td>7.22</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>(15.79)(^c)</td>
<td>(17.70)(^c)</td>
<td>(14.42)(^c)</td>
<td>(10.08)</td>
</tr>
<tr>
<td>KL</td>
<td>0.46</td>
<td>0.49</td>
<td>0.43</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(1.127)(^c)</td>
<td>(1.330)(^c)</td>
<td>(0.914)(^c)</td>
<td>-</td>
</tr>
<tr>
<td>d(K/L)/dt</td>
<td>-</td>
<td>-</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1.82)(^c)</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.08</td>
<td>-</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.36)(^b)</td>
<td></td>
<td>(0.59)</td>
<td></td>
</tr>
<tr>
<td>GAP</td>
<td>-</td>
<td>-</td>
<td>-0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(-1.47)</td>
<td></td>
</tr>
<tr>
<td>IS</td>
<td>0.20</td>
<td>0.17</td>
<td>0.29</td>
<td>-0.05</td>
</tr>
<tr>
<td></td>
<td>(1.00)(^b)</td>
<td>(1.04)(^b)</td>
<td>(1.53)(^b)</td>
<td>(-0.50)</td>
</tr>
<tr>
<td>IS(^c)GAP</td>
<td>-</td>
<td>-</td>
<td>-0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(-1.47)</td>
<td></td>
</tr>
<tr>
<td>d(IS)/dt</td>
<td>-</td>
<td>-</td>
<td>-0.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1.85)(^c)</td>
<td></td>
</tr>
<tr>
<td>HS</td>
<td>0.32</td>
<td>0.35</td>
<td>0.31</td>
<td>-0.00</td>
</tr>
<tr>
<td></td>
<td>(2.96)(^b)</td>
<td>(4.09)(^b)</td>
<td>(2.91)(^b)</td>
<td>(-0.02)</td>
</tr>
<tr>
<td>HS(^c)GAP</td>
<td>-</td>
<td>-</td>
<td>-0.07</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.40)</td>
<td></td>
</tr>
<tr>
<td>d(HS)/dt</td>
<td>-3</td>
<td>-</td>
<td>-0.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(-1.52)</td>
<td></td>
</tr>
<tr>
<td>DUMBELL</td>
<td>0.01</td>
<td>-0.09</td>
<td>-0.07</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>(0.13)(^b)</td>
<td>(-1.08)(^b)</td>
<td>(-0.65)(^b)</td>
<td>(1.16)</td>
</tr>
<tr>
<td>DUMDEU</td>
<td>-0.04</td>
<td>0.04</td>
<td>-0.05</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(0.47)(^b)</td>
<td>(0.51)(^b)</td>
<td>(-0.39)(^b)</td>
<td>(-0.34)</td>
</tr>
<tr>
<td>DUMDNK</td>
<td>-0.25</td>
<td>-0.24</td>
<td>-0.41</td>
<td>-0.09</td>
</tr>
<tr>
<td></td>
<td>(2.58)(^b)</td>
<td>(-2.64)(^b)</td>
<td>(-4.25)(^b)</td>
<td>(-2.79)(^b)</td>
</tr>
<tr>
<td>DUMESP</td>
<td>0.47</td>
<td>0.41</td>
<td>0.28</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td>(4.05)(^b)</td>
<td>(3.82)(^b)</td>
<td>(2.34)(^b)</td>
<td>(-2.04)(^b)</td>
</tr>
<tr>
<td>DUMFRA</td>
<td>-</td>
<td>-0.05</td>
<td>-0.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.49)(^b)</td>
<td></td>
</tr>
<tr>
<td>DUMGRB</td>
<td>0.10</td>
<td>0.06</td>
<td>0.17</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>(0.89)(^c)</td>
<td>(0.34)(^b)</td>
<td>(1.35)(^b)</td>
<td>(0.80)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.78</td>
<td>0.77</td>
<td>0.75</td>
<td>0.28</td>
</tr>
<tr>
<td>F-statistic</td>
<td>29.71(^c)</td>
<td>34.11(^c)</td>
<td>26.54(^c)</td>
<td>3.45(^c)</td>
</tr>
<tr>
<td>n</td>
<td>76</td>
<td>88</td>
<td>76</td>
<td>89</td>
</tr>
</tbody>
</table>

Note: \(a, b, c\) indicate a significant coefficient at the 10%, 5% and 1% level, respectively. \(T\)-statistics appear in parentheses beneath the coefficients.

Variable The fifth column presents the estimation results of Equation (9). The diffusion effect is indicated by the estimated coefficients of IS^cGAP and HS^cGAP, while the research effect is indicated by the estimated coefficients of IS and HS. The growth in capital intensity and in the employment share of intermediate and highly-skilled workers are also incorporated in this equation, since these variables would also be expected to influence productivity growth.

Moreover, since the model of this paper only analyses the impact of sector-specific variables on sectoral labour productivity (and productivity growth), country-specific dummy variables are incorporated to allow for differences in (the growth rates of) value-added per worker between countries.

The results presented in Table 1 show that the estimated equations with the level of sectoral labour productivity (Y/L) as the dependent variable perform very well. The adjusted R^2 is between 75 and 78% for the three regressions. The results do not change significantly if the average firm size is excluded from the estimated equation or if the reference year is 1991 instead of 1988. As expected, sectors with a high capital intensity (K/L) reveal a high value-added per worker. The coefficient of the capital intensity is significant at the 1% level, though this coefficient is rather large as compared to the estimates reported in Davies and Cavés (1987)\(^{14}\) and in Corvers et al. (1995)\(^{15}\). Moreover, the estimated coefficient of the average firm size, L, is significantly positive in 1988, which indicates economies of scale at the sector level. The average firm size was only available for 1988, which may explain the decreased significance (relative to 1988) of the average firm size in 1991. An increase in the sector's average firm size of 1% results in an 8% increase in labour productivity, which is comparable to the estimates in other empirical studies (Davies and Cavés, 1987). The third column of Table 1 shows that the 1988 regression results of Equation (5) are little different if average firm size is excluded and the manufacturing sectors of France are included.

The table also shows that the employment share of intermediate-skilled workers IS, does not have a significant effect on the labour productivity of a sector, which implies that the worker and allocative effects are not significant for intermediate-skilled labour. This result may be explained by arguing that intermediate-skilled workers are not productive simply as a result of their initial schooling. If it is assumed that secondary school education and training are complementary, then intermediate-skilled workers may become more productive by training on-the-job or by participating in formal training courses. Moreover, the estimated θ_{h} is only 0.20 in 1988 and 0.29 in 1991. As pointed out in Section III, these estimates must be compared to the employment share of intermediate-skilled labour. It can be seen that in the manufacturing sectors the employment shares of intermediate-skilled workers are much larger than 0.20 or 0.29 in Germany and Denmark. According to Equation (6) this implies that the output elasticities with respect to intermediate-skilled labour are negative for the

\(^{14}\) Davies and Cavés estimated output elasticities with respect to physical capital, using gross fixed capital stock per worker as an indicator of capital intensity. These elasticities varied between 0.075 and 0.265 for a sample of British and US industries.

\(^{15}\) This study found estimated coefficients of 0.31 for Germany and 0.40 for the Netherlands, using gross investments in fixed capital per worker as an approximation for capital intensity. The estimated coefficients are smaller, but not significantly smaller, if the stock of physical capital per worker is used as a proxy for the capital intensity.
manufacturing sectors in these two countries. Although the
evidence is not very strong, because the estimated coefficients are not very significant for intermediate-skilled labour and because production functions between sectors and countries may differ, the resulting output elasticities with respect to intermediate-skilled labour may point to overinversion of human capital in the German and Danish manufacturing sectors. On the other hand, the employment share of intermediate-skilled workers is far below the estimated θ_n in France. This may point to underinvestment of human capital in French manufacturing sectors due to a small employment share of intermediate-skilled labour in these sectors. Therefore both profits and labour productivity in French manufacturing sectors could be increased by further increasing the employment share of intermediate-skilled labour.

Next, Table 1 shows that the estimated θ_n of the employment share of highly-skilled workers, HS, is significantly positive, which indicates a significant worker and allocative effect for this skill group. The estimated coefficients are 0.32 and 0.31 for 1988 and 1991, respectively, which is much larger than the employment shares of highly-skilled labour of all manufacturing sectors in the sample. The output elasticities with respect to highly-skilled labour derived from Equation (6), are positive for all manufacturing sectors in the sample. Moreover, a large positive difference between the estimated θ_n and the employment share of highly-skilled labour indicates that profits can be maximized by further increasing the employment share of highly-skilled labour. In particular, the employment shares of highly-skilled labour for the low-skill sectors, and the unweighted average employment shares of highly-skilled labour in the Spanish manufacturing sectors are far below 0.32 or 0.31. This points to underinvestment of human capital in these manufacturing sectors due to a small employment share of highly-skilled workers.

Finally, the coefficients of the country-specific dummy variables (DUM) show that the average labour productivity across all 15 sectors is relatively low in Denmark and relatively high in Spain. These differences cannot be explained by the sector-specific variables incorporated in the equation. Englander and Gurney (1994a) also find a relatively low average labour productivity in Denmark, which they explain by the relative high employment share of part-time workers in Denmark. Furthermore, they find a relatively high average labour productivity in Spain, which they explain by stating that the low employment level in Spain results in a relatively large input of the most productive workers (since these workers are selected first). However, there is no evidence for the last hypothesis. Another explanation for the unexpectedly high average labour productivity in Spain may be the relatively high employment share of temporary workers (see de Groot et al. 1995). These workers contribute to the value added of a sector, but may not be counted as employees of that particular sector.

The last column of Table 1 shows the estimation results of Equation (9) of Section III, in which the growth in the labour productivity of a sector between 1988 and 1991 $d(Y/L)/dY_{1991}$ is the dependent variable. Although the estimated equation is significant at the 1% level, the adjusted R-squared is only 28%. As could be expected, the coefficient of the growth in capital intensity between 1988 and 1991 is significant (though only at the 10% level). The estimate of this coefficient is similar to those reported in Englander and Gurney (1994). However, the estimated coefficients of the growth in the employment shares of intermediate-skilled workers, $d(IS)/dt$, and highly-skilled workers, $d(HS)/dt$, are both negative but not significant.

The coefficient for the technological gap (GAP) which is calculated by considering the differences in value added in the same sector in different countries, is not significant. However, its negative sign indicates that the labour productivity of sectors diverged between 1988 and 1991, since the larger the gap, the larger the growth in labour productivity.

The coefficient which indicates the diffusion effect of intermediate-skilled workers, IS^*GAP, is significant. An increase of one percentage point in the IS^*GAP leads to an increase of 0.19 percentage points in the growth in sectoral labour productivity. The coefficient of the variable indicating the research effect of intermediate-skilled workers, IS, is not significant and its sign is unexpected. Furthermore, none of the variables related to the employment share of highly-skilled workers are significant. The estimated coefficient of HS^*GAP, indicating the diffusion effect, is positive but not significant. The estimated coefficient of HS is not significant and its sign is unexpected. These results imply that neither the diffusion effect nor the research effect of highly-skilled labour can be confirmed.

VI CONCLUSIONS

This paper discusses four effects of human capital on the labour productivity of manufacturing sectors. Since sectoral labour productivity can be regarded as an indicator of competitiveness, the paper implicitly examines the importance of investments in human capital for increasing the international competitiveness of manufacturing sectors within the EU member states. It has been argued that the worker and allocative effects of human capital increase the

10 See also de Groot et al. (1995). However, the Netherlands and Great Britain also have high shares of part-time workers.

11 The empirical studies mentioned by Englander and Gurney (1994) show that output growth increases by 0.09 to 0.17 percentage points for every percentage point increase in the investment share. However, these studies explain growth rates of countries by macroeconomic growth models.
productivity level, whereas the diffusion and research effects of human capital increase productivity growth. Human capital is measured by the employment shares of intermediate and highly-skilled workers. Other variables that are relevant in explaining labour productivity at sector level are the capital intensity and average firm size. Using a Cobb–Douglas function for the effective labour input of intermediate and highly-skilled workers, it has been shown that, if the employment shares of intermediate or highly-skilled workers produce a larger worker and allocative effect, this indicates that both profits and labour productivity could be increased by raising the employment share of these workers.

The data described here reveal that the sector rankings by the employment shares of highly-skilled workers are relatively similar across the seven countries in the sample. There is less congruence between the rankings with regard to the employment shares of intermediate-skilled workers. The 15 manufacturing sectors distinguished in this paper can be divided into three groups of sectors with different employment shares of highly-skilled workers: low-skill sectors, medium-skill sectors, and high-skill sectors. Despite the relatively similar rank orders of manufacturing sectors across countries, the sectoral employment shares of intermediate and highly-skilled workers differ very much between countries.

Least squares estimations for 13 manufacturing sectors of the sample countries showed that capital intensity and average firm size have a significantly positive effect on labour productivity at sector level. The effects of intermediate and highly-skilled labour on sectoral labour productivity, which reflect the worker and allocative effect, are also positive. Moreover, the employment shares of intermediate-skilled workers in Germany and Denmark are large relative to the estimated worker and allocative effect of intermediate-skilled workers, whereas in France the employment share of intermediate-skilled workers is relatively small. Although the worker and allocative effect is not significant for intermediate-skilled labour, the results may indicate overinvestment of human capital in the German and Danish manufacturing sectors.

The worker and allocative effect of highly skilled labour is significantly positive. The employment shares of highly-skilled labour are small relative to the estimated worker and allocative effect in the low-skill manufacturing sectors of all countries in the sample, and in all the Spanish manufacturing sectors. This indicates underinvestment in human capital in these manufacturing sectors. However, the sectors may have different production functions, and thus different optimal inputs of intermediate and highly-skilled labour.

Both capital intensity growth and the employment share of intermediate-skilled labour have a significant positive effect on the growth in labour productivity. The results imply that the employment share of intermediate-skilled workers has a diffusion effect on labour productivity, since it reduces the technological gap, within a sector, between the various countries. A static analysis comparing estimated coefficients for the worker and allocative effect with the employment shares of intermediate-skilled workers does not account for such dynamic implications with regard to productivity growth. Therefore, the diffusion effect of intermediate-skilled labour on productivity growth casts some doubt on the apparent overinvestment of intermediate-skilled labour in German and Danish manufacturing sectors. On the other hand, the diffusion effect of intermediate-skilled labour provides additional evidence that the employment share of intermediate-skilled workers in French manufacturing sectors is too small. No diffusion effect could be shown for the employment share of highly-skilled workers, and there was no evidence to support a research effect from the employment shares of intermediate and highly-skilled workers.

ACKNOWLEDGEMENTS

I would like to thank Andries de Gripp, Lex Borghans, Hans Henje and an anonymous referee for their comments on an earlier version. I would like to thank Jeroen Hoeve, Hans van Hooff, Nels Langkjar, Maurren Slabbers and Bart Verspaghen for their assistance and suggestions in collecting and processing the data. All mistakes and the views expressed remain my own responsibility.

REFERENCES

Data Appendix

Employment Shares of Low-, Intermediate- and High-skilled Labour (Fig 1a-1g and Figs 2a and 2b).

The data for calculating these employment shares were drawn from Eurostat's Labour Force Survey (1985-91) The classification of the skill level is analogous to UNESCO's International Standard Classification of Education (ISCED) ISCED levels 0-1 (pre-primary and primary education) and 2 (lower secondary education) correspond to the skill level of low-skilled labour ISCED level 3 (higher secondary education) correspond to the skill level of intermediate-skilled labour, and ISCED levels 5 to 7 (higher
university and non-university education) corresponds with the skill level of highly-skilled labour. The numbers of workers in the various NACE18 classes (at the 2-digit level) have been aggregated to ISIC19 sectors according to the concordance table below. The numbers of intermediate or highly-skilled workers in the NACE classes which are below the threshold value of Eurostat are estimated using the number of intermediate and highly-skilled workers in the NACE divisions (at the 1-digit level). Since there were no data available for France in 1990 and 1991, the employment shares of 1989 have been used as an approximation for 1990 and 1991. Conversely, since there were no data available for the Netherlands in 1988 and 1989, the employment shares of 1990 have been used as an approximation for 1988 and 1989.

\textit{Sectoral labour productivity}

The variable indicating the average labour productivity per worker in a sector has been calculated by dividing the value-added per sector by the number of workers employed per sector. Data on both the value-added and the numbers of workers employed were drawn from the STAN industrial database. The STAN database expresses value-added in local currencies at current prices. Therefore, these values have been converted into 1985 prices using sector prices from the United Nations Industrial Statistics (UNIDO) database. Purchasing power parities based on GDP figures, and drawn from the Penn World Tables, have then been used to convert the local currencies into 1985 dollar prices. For Spain, the value-added per worker in 1990 is used as an approximation for the value-added per worker in 1991.

\textit{Capital intensity}

The capital intensity variable has been approximated by gross investments in fixed capital per worker. Data on gross investments in fixed capital and the number of workers employed were drawn from the STAN industrial database. Since investments are expressed in local currencies at current prices, these values have been converted into 1985 prices using sector prices from the United Nations Industrial Statistics (UNIDO) database. Purchasing power parities of gross investments, drawn from the Penn World Tables, have then been used to convert the local currencies into 1985 dollar prices. For Spain, the capital intensity in 1990 is used as an approximation for the capital intensity in 1991.

\textit{Average firm size}

The data on the number of establishments in each sector were drawn from the Industrial Structure Statistics (ISS) of the OECD. For most countries, data were only available up to 1988. The average firm size has been calculated by dividing the number of establishments by the number of workers employed. The latter data were drawn from the STAN industrial database. For France, no data were available for the number of establishments per sector.

\textit{Technological gap}

The variable indicating the technological gap in a particular sector, between various countries, is measured using data on the value-added per worker. The definition provided in Section III, $GAP = \frac{(T(t) - A(t))}{A(t)}$, is used to calculate the technological gap. The level of technological knowledge actually in use in a sector $(A(t))$ is assumed to be represented by the value-added per worker for that particular sector. Moreover, it is assumed that the level of theoretical technological knowledge $(T(t))$ is represented by the highest labour productivity, for that particular sector, within the sample of seven countries. For example, the technological gap of the food sector in France is approximated by the difference between the labour productivity of the food sector in the sample country which has the highest food sector labour productivity and the productivity of the food sector in France, divided by the productivity of the food sector in France.

\textit{Classification of ISIC sectors}

\begin{verbatim}
foo 3100 Food beverages and tobacco
tex 3200 Textile, wearing apparel and leather industries
woo 3300 Wood and wood products, including furniture
pap 3400 Paper and paper products printing and publishing
che 3510 + 20 Industrial chemicals and other chemical products
pet 3530 + 40 Petroleum refineries and miscellaneous products of petroleum and coal
rup 3550 + 60 Rubber products and plastic products not elsewhere classified
nme 3600 Non-metallic mineral products except products of petroleum and coal
bmi 3710 + 20 Iron and steel basic industries and non-ferrous metal basic industries
pme 3810 Fabricated metal products, except machinery and equipment
mac 3820 Machinery except electrical
ele 3830 Electrical machinery apparatus appliances and supplies
\end{verbatim}

18 General Industrial Classification of Economic Activities, which is used within the European Union
19 International Standard Industrial Classification of the United Nations, which is used for the classification of sectors in the STAN database (see below)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>ISIC 1977</th>
<th>NACE 1970</th>
</tr>
</thead>
<tbody>
<tr>
<td>foo</td>
<td>3100</td>
<td>41 + 42</td>
</tr>
<tr>
<td>tex</td>
<td>3200</td>
<td>43 + 44 + 45</td>
</tr>
<tr>
<td>woo</td>
<td>3300</td>
<td>46</td>
</tr>
<tr>
<td>pap</td>
<td>3400</td>
<td>47</td>
</tr>
<tr>
<td>che</td>
<td>3510 + 3520</td>
<td>25 + 26</td>
</tr>
<tr>
<td>pet</td>
<td>3530 + 3540</td>
<td>11 + 12 + 13 + 14 + 15 + 21 + 23</td>
</tr>
<tr>
<td>rup</td>
<td>3550 + 3560</td>
<td>48</td>
</tr>
<tr>
<td>nme</td>
<td>3600</td>
<td>24</td>
</tr>
<tr>
<td>bmi</td>
<td>3710 + 3720</td>
<td>22</td>
</tr>
<tr>
<td>pme</td>
<td>3810</td>
<td>31</td>
</tr>
<tr>
<td>mac</td>
<td>3820</td>
<td>32 + 33</td>
</tr>
<tr>
<td>ele</td>
<td>3830</td>
<td>34</td>
</tr>
<tr>
<td>tra</td>
<td>3840</td>
<td>35 + 36</td>
</tr>
<tr>
<td>opt</td>
<td>3850</td>
<td>37</td>
</tr>
<tr>
<td>oma</td>
<td>3900</td>
<td>49</td>
</tr>
</tbody>
</table>

Table of concordances between ISIC 1977 (rev. 2) and NACE 1970 classifications

Fig 1a Belgium: shares of intermediate (IS) and highly-skilled (HS) workers, 1988

Fig 1b Germany: shares of intermediate (IS) and highly-skilled (HS) workers, 1988

Fig 1c Denmark: shares of intermediate (IS) and highly-skilled (HS) workers, 1988

Fig 1d Spain: shares of intermediate (IS) and highly-skilled (HS) workers, 1988
Fig 1e France shares of intermediate (IS) and highly-skilled (HS) workers, 1988

Fig 1f Great Britain shares of intermediate (IS) and highly-skilled (HS) workers, 1988

Fig 1g Netherlands shares of intermediate (IS) and highly-skilled (HS) workers, 1990

Fig 2a Shares of highly-skilled workers (HS), unweighted mean of manufacturing sectors per country.

Fig 2b Shares of intermediate-skilled workers (IS), unweighted mean of manufacturing sectors per country.